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Vibrations, by the physical nature, are diverse. There are mechanical, electromagnetic, 

electromechanical, chemical, thermodynamic vibration there. Solutions of differential equation of  these 

vibrations were obtained by different mathematical methods. We obtain analytical solutions of Lienard’s 

differential equations by the method of partial sampling discretization of nonlinear differential equations. 

Graphic of solution, which describes the considering process and corresponds to damped oscillations has 

been plotted. 
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1. Introduction 

Second order differential equations are encountered in many applications. In relatively simple 

cases, these equations turn out to linear, and with constant coefficients, i.e. they have the form 
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Two well-known examples are a linear spring and electrical circuit. In the case of the spring х  

is an offset, A cargo weight, 
dt

dx
B resistance of the medium,  хC the restoring force 

spring and )t(F quantity the «force». In the case of the electrical circuit x  is a current, 

A induction, B resistance, C/1 capacitance and dt)t(F  
represents the electromotive force. 

Particularly important case is when F  has the oscillatory character, and then the oscillatory 

«response» is searched for, i.e. oscillating solution of the equation. 

Since then, we have second-order equation, that 0A , and, dividing it by A , we obtain 
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Middle quantity corresponds to the energy dissipation, and therefore in the general case we call 

it as a dissipative term. As it is known it characterizes the deviation from the law of energy 

conservation. 

Usually equations of type (*), (**) appear because they permit a solution «in closed form», and 

thereby all the properties of their solutions can be easily studied. For this reason, physicists and 

engineers are eager to simplify the task they are dealing with, that it is described by linear equations 

with constant coefficients. However on many reasons it cannot be done according to the 

substantially nonlinear problems [1]. 

Quite general types of equations are 
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Also the following partial cases have to be considered: 
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French physicist A. Lienard, in his important but little-known article [2] investigated in detail 

the quite general equation with dissipative middle quantity 
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so called Lienard’s equation. 

In the present paper Lienard’s equation is solved by method of partial discretization of 

nonlinear differential equations. The method essence consists of partial discretization of nonlinear 

term of the equation and we obtain the solution in the class of generalized functions. 

2. Formulation of the problem 

Consider Lienard’s nonlinear differential equation in the following form 
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under the initial conditions 
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3. Solution of the problem 

Transform equation (1)  
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where  , the real numbers. 

Integrating equation twice (3) by t , we obtain 
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Discretizing the second, third terms of the equation (5) 
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and after integration, we have 
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where    – Dirac’s delta function,  H  – Heaviside’s unit function. 

Taking advantage of initial conditions (2), we find the constant integration A  and B  
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From the equation (7) we obtain solving equation for each point kt .  Determine for point 1t  
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using method of mathematical induction of solving equation we determine for point kt , where 
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Designated through 
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for point 1t  we can lead equation (9) to cubed equation 
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Divide the equation (13) to the senior coefficient 1а . Then it will be assumed 

,qxpx 0111

3

1                                                                                                                    (14) 

where    .
a

c
q,

a

b
р

1

1

1

1

1

1   

The equation such as (14) is trinomial cubed equation, where there is not a term with unknown 

quantity in the second power. According to Cardano’s formula trinomial cubed equation 
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is solved by leading them to squared equation.  

For this purpose we will seek for the solution of the equation (15) in the following form 
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where у a new variable term. By substitution (16) equation (15) is led to the form  
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Multiplying the equation (17) by 3у , we obtain the squared equation concerning 3у : 
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Solution of the equation (18) has the following form: 
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According to (16), it is followed that the equation (15) has two solutions: 
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In detail these solutions are given in such way: 
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In spite of apparent differences, solutions (20) and (21) are coincided. Thus, the root of the 

equation is an unique and it equals to  
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and for the solution of the equation (15) we obtain the formula 
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Determine coefficient for point 2t   32 ttt  , 
2

32

2

tt
t


   

     
.

)(
6

))((
2

1

,

)(
6

26

13

2213

2

2
2

13

12121

3

1212

2

2
2

tt

ttt

a

b
р

tt

txttxttBA

a

c
q
























         (25) 

Using method of mathematical induction we determine coefficient for point kt , where n,k 3 , 
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Thus, solution of the equation (11) for point kt , where n,k 3 : 
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4. Results of calculation 

Substituting discovered coefficient (26) into the root of equation (27) we find all terms  ktх  

when n,k 1 , which given in Fig.1. Graphic was drawn by using program MathCAD under 

calculated data  6,  2. 

 
Fig.1. Graphic of dependence  kk txx  . 

5. Conclusion 

The graphic shows that the equation (1) describes a damped wave process. Solutions of forced 

oscillations can also be obtained by sampling method of partial discretization nonlinear differential 

equations. If we disassemble the vibrations, they are very diverse in their physical nature [3]. Such 

vibrations may be caused: 

1) mechanical vibrations, such as the vibrations of the pendulum , the bridge, the ship in the 

wake, the strings; 

2) electromagnetic waves, such as the vibrations in the resonant circuit , resonant cavity , 

waveguide, radio-waves  and etc.; 

3) electromechanical oscillations, such as the vibration of the phone membrane ; 

4) chemical fluctuations, for example, fluctuations in the concentration of the reactants at 

periodic chemical reactions ; 

5) the thermodynamic fluctuations, for example, temperature fluctuations . 

Taking into account the importance of these physical processes, construction of analytical 

solutions of such problems is highly relevant. In this paper the problem was solved by method of 

partial discretization of nonlinear differential equations by A.N.Tyurehodzhaev. Also using this 

method we obtained analytical solutions and graphics of problems on deformation of a circular 

elastic, flexible plate under a variable load [4], which confirmed that using the partial sampling 

method of discretization we can solve the nonlinear differential equation of higher order with 

variable coefficients. 
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